COURSE PROFILE

Course Name & No.: Chemical Process control CHE-442

Credit Hours & Term: 4 : 3 & 2 Every Fall

Prerequisite	: ChE – 321 Chemical Re ChE – 334 Separation I EE -332 Numerical M	eaction Engineering Process ethods
Instructor Time &Room #	: Dr. AbdulRahim Al-Zahrani : 11:00- 12:20 .S.M. 11: 00 -2:00W. (Lab.) Bldg. 45, Room 120	
Goals	This course is designed to give a chemical engineering student the fundamental principles of automatic control and how they can be applied to chemical engineering processes.	
Text Book:	1) Chemical Process Control	ol by G. Stephanoulos, 1980.
Reference Books:	 Process Modeling, Simulation and Control for Chemical Engineers (2nd edition) by W. L. LuybenA.,1990. Process Dynamic and Control, by D. Seborg, T. F. Edgar and D. A. Mellichamp, 1989. Principles and Practice of Automatic Process Control C. A. Smith and A. B. Corripio, 1984. 	
Grade Distribution:	Home work, Quizzes Laboratory Design Project Major Exams (2) Final Exam	15% 10% 15% 35% 25%

Faculty of Engineering Chemical & Materials Eng. Dept.

ChE 442 Chemical process control **Course Outline**

Fall 2003

Week	Topics to be covered	
1	Incentive for chemical process control	
	Hardware for a process control system	
2	Design aspect of a process control system	
3	Development of a mathematical model	
	Modeling considerations for control purpose	
	Quiz #1	
4	Computer simulation	
	Linearization of nonlinear systems	
5	Solution of linear differential equations using Laplace Transforms	
	Tansfer functions and the input-output models	
6	Dynamic behavior of first-order systems	
	Dynamic behavior of second-order systems	
	Dynamic behavior of higher-order systems	
	Quiz # 2	
7	Introduction to feedback control	
	Dynamic behavior of feedback-controlled processes	
	Exam # 1	
8	Stability analysis of feedback systems	
9	Design of feedback controllers	
10	Design of feedback controllers	
11	Frequency response analysis of linear processes	
	Exam # 2	
12	Design of feedback control systems using frequency response techniques	
13	Design of feedback control systems using frequency response techniques	
14	Analysis and designe of advanced control systems	
15	Discrete-Time Systems	
16	Final	